Skip to main content

ADR-002: Microservices vs Monolith Architecture

Status

Accepted

Context

We need to decide on the overall application architecture for the GISE methodology platform. The decision between a monolithic architecture and microservices architecture will significantly impact development velocity, operational complexity, scalability, and team organization.

Current Situation

  • Team size: 8-12 developers across backend, frontend, and DevOps
  • Expected load: 10,000+ concurrent users at peak
  • Feature scope: User management, project templates, code generation, collaboration tools
  • Deployment frequency: Multiple deployments per week desired
  • Development stage: Early product development with rapidly evolving requirements

Key Considerations

  • Development Speed: Need to move quickly in early stage development
  • Team Coordination: Relatively small team that can coordinate effectively
  • Technology Consistency: Benefits of standardized technology stack
  • Operational Complexity: Limited DevOps resources initially
  • Future Scalability: Need to support growth to 100,000+ users
  • Feature Isolation: Some features may need independent scaling

Decision

We will start with a Modular Monolith architecture and evolve to microservices as the product and team matures.

Rationale

Phase 1: Modular Monolith (Months 1-12)

Architecture Overview:

┌─────────────────────────────────────────────────────┐
│ GISE Platform API │
├─────────────────────────────────────────────────────┤
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ User │ │ Project │ │ Template │ │
│ │ Module │ │ Module │ │ Module │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
├─────────────────────────────────────────────────────┤
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Auth │ │ Search │ │ Analytics │ │
│ │ Module │ │ Module │ │ Module │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
├─────────────────────────────────────────────────────┤
│ Shared Infrastructure │
│ (Database, Cache, Logging) │
└─────────────────────────────────────────────────────┘

Module Boundaries:

// Clear module interfaces prevent tight coupling
interface UserModule {
createUser(userData: CreateUserRequest): Promise<User>;
authenticateUser(credentials: Credentials): Promise<AuthResult>;
updateUser(userId: string, updates: UserUpdates): Promise<User>;
}

interface ProjectModule {
createProject(projectData: CreateProjectRequest): Promise<Project>;
generateCode(projectId: string, template: Template): Promise<GeneratedCode>;
shareProject(projectId: string, permissions: Permissions): Promise<void>;
}

interface TemplateModule {
searchTemplates(query: SearchQuery): Promise<Template[]>;
createTemplate(templateData: CreateTemplateRequest): Promise<Template>;
validateTemplate(template: Template): Promise<ValidationResult>;
}

Benefits of Starting with Modular Monolith

Development Velocity:

  • Single codebase simplifies development setup and debugging
  • Shared code and utilities reduce duplication
  • Atomic transactions across modules simplify data consistency
  • Integrated testing environment with all components

Team Efficiency:

  • Easier coordination with small team
  • Simplified deployment and rollback procedures
  • Single technology stack reduces context switching
  • Unified monitoring and logging

Early Stage Advantages:

  • Faster iteration on product-market fit
  • Easier to refactor boundaries as requirements evolve
  • Lower initial operational overhead
  • Simpler CI/CD pipeline

Module Design Principles

Clear Boundaries:

// Each module has well-defined interfaces
export class ProjectService {
constructor(
private userService: UserService, // Dependency injection
private templateService: TemplateService,
private database: Database
) {}

async createProject(userId: string, projectData: CreateProjectRequest): Promise<Project> {
// Validate user permissions
await this.userService.validateUser(userId);

// Use templates for validation
const template = await this.templateService.getTemplate(projectData.templateId);

// Create project with transaction
return this.database.transaction(async (tx) => {
return tx.projects.create({
ownerId: userId,
...projectData,
templateId: template.id
});
});
}
}

Database Organization:

-- Logical separation within single database
-- User Module Tables
CREATE SCHEMA user_management;
CREATE TABLE user_management.users (...);
CREATE TABLE user_management.user_sessions (...);

-- Project Module Tables
CREATE SCHEMA project_management;
CREATE TABLE project_management.projects (...);
CREATE TABLE project_management.project_collaborators (...);

-- Template Module Tables
CREATE SCHEMA template_system;
CREATE TABLE template_system.templates (...);
CREATE TABLE template_system.template_categories (...);

Phase 2: Selective Microservices (Months 6-18)

As the system matures, extract specific modules that benefit from independent scaling:

Candidates for Microservice Extraction:

  1. Code Generation Service

    • CPU-intensive workloads
    • Independent scaling needs
    • Potential for different technology stack (Python for AI/ML)
  2. Search Service

    • High read volume
    • Different performance characteristics
    • Potential integration with specialized search engines
  3. Analytics Service

    • Different data patterns (write-heavy, batch processing)
    • Separate teams may own analytics functionality
    • Integration with external analytics tools
┌─────────────────┐    ┌──────────────────┐
│ Web Client │ │ Mobile App │
└─────────────────┘ └──────────────────┘
│ │
└────────────┬───────────┘

┌────────────────────────┐
│ API Gateway │
│ (Authentication, │
│ Rate Limiting) │
└────────────────────────┘

┌─────────────────┼─────────────────┐
│ │ │
┌───▼────┐ ┌──────▼──────┐ ┌─────▼────┐
│ Core │ │Code Generation│ │ Search │
│Monolith│ │ Service │ │ Service │
│ │ │ │ │ │
└────────┘ └───────────────┘ └──────────┘

Implementation Plan

Phase 1: Modular Monolith Setup (Weeks 1-8)

Week 1-2: Foundation

// Project structure
src/
├── modules/
│ ├── user/
│ │ ├── user.service.ts
│ │ ├── user.controller.ts
│ │ ├── user.model.ts
│ │ └── user.types.ts
│ ├── project/
│ │ ├── project.service.ts
│ │ ├── project.controller.ts
│ │ └── ...
│ └── template/
├── shared/
│ ├── database/
│ ├── logging/
│ ├── validation/
│ └── types/
├── infrastructure/
│ ├── server.ts
│ ├── database.ts
│ └── middleware/
└── tests/

Week 3-4: Core Modules

  • Implement User module with authentication
  • Implement Project module with basic CRUD
  • Implement Template module with search

Week 5-6: Integration

  • Module integration and API composition
  • Shared infrastructure (database, caching, logging)
  • Error handling and validation

Week 7-8: Testing and Deployment

  • Comprehensive test suite
  • CI/CD pipeline setup
  • Production deployment and monitoring

Phase 2: Monitoring and Metrics (Weeks 9-12)

Module Performance Tracking:

// Module performance decorators
@TrackPerformance('user-module')
export class UserService {
@MetricsCollection({ operation: 'create-user' })
async createUser(userData: CreateUserRequest): Promise<User> {
// Implementation
}
}

// Monitoring configuration
const moduleMetrics = {
'user-module': {
responseTime: { threshold: 100, percentile: 95 },
errorRate: { threshold: 1 }, // 1% error rate
throughput: { min: 100 } // requests per second
},
'project-module': {
responseTime: { threshold: 200, percentile: 95 },
errorRate: { threshold: 2 },
throughput: { min: 50 }
}
};

Phase 3: Extraction Decision Points (Months 6-9)

Microservice Extraction Criteria:

const extractionDecisionMatrix = {
codeGeneration: {
independentScaling: 9, // High CPU usage, different scaling needs
teamOwnership: 7, // AI/ML team may own this
technology: 8, // Python may be better for AI/ML
dataIsolation: 6, // Some shared data needed
deploymentFrequency: 8, // Frequent algorithm updates
score: 38 // Candidate for extraction
},

userManagement: {
independentScaling: 4, // Scales with overall system
teamOwnership: 3, // Core platform team
technology: 2, // No technology benefit
dataIsolation: 3, // Highly coupled data
deploymentFrequency: 4, // Standard deployment cycle
score: 16 // Keep in monolith
},

search: {
independentScaling: 8, // High read volume
teamOwnership: 6, // Could have dedicated team
technology: 7, // Elasticsearch integration
dataIsolation: 8, # Mostly read-only data
deploymentFrequency: 5, // Standard updates
score: 34 // Candidate for extraction
}
};

// Extract services scoring > 30

Consequences

Positive Consequences

Development Benefits:

  • Faster initial development and iteration
  • Simplified debugging with single codebase
  • Atomic transactions ensure data consistency
  • Reduced operational complexity initially
  • Easier to refactor module boundaries

Team Benefits:

  • Single deployment process for entire team
  • Shared knowledge across codebase
  • Simplified local development setup
  • Easier code sharing and reuse

Technical Benefits:

  • Lower latency between modules
  • Simplified error handling and monitoring
  • Single technology stack
  • Easier integration testing

Negative Consequences

Scalability Limitations:

  • All modules scale together (may be inefficient)
  • Single point of failure for entire system
  • Technology constraints apply to all modules
  • Resource allocation less flexible

Development Constraints:

  • Larger codebase may slow development over time
  • All developers need understanding of entire system
  • Coordinated deployments required
  • Technology choices affect entire system

Future Migration Costs:

  • Breaking apart monolith requires significant refactoring
  • Data migration complexity when extracting services
  • Need to implement service communication patterns
  • Testing complexity increases with distribution

Alternatives Considered

Pure Microservices Architecture

Pros:

  • Independent scaling of services
  • Technology diversity possible
  • Team autonomy and ownership
  • Fault isolation between services

Cons:

  • High operational complexity for small team
  • Distributed system complexity (network, consistency)
  • Service discovery and communication overhead
  • Debugging across services challenging
  • Higher infrastructure costs

Decision: Rejected for initial implementation due to team size and operational complexity.

Traditional Monolith

Pros:

  • Simplest possible architecture
  • Fastest initial development
  • Easiest deployment and operations
  • Single technology stack

Cons:

  • No clear boundaries or isolation
  • Difficult to extract services later
  • All code changes affect entire system
  • Technology and scaling limitations

Decision: Rejected in favor of modular approach that enables future evolution.

Event-Driven Architecture

Pros:

  • Loose coupling between components
  • High scalability potential
  • Good for complex workflows
  • Natural fit for some business processes

Cons:

  • Complex debugging and monitoring
  • Eventual consistency challenges
  • Event schema evolution complexity
  • Requires significant messaging infrastructure

Decision: Rejected for initial implementation; may be adopted later for specific workflows.

Migration Strategy

Metrics-Driven Decision Making

Module Extraction Triggers:

extraction_criteria:
performance:
- response_time_p99 > 500ms consistently
- cpu_usage > 80% due to single module
- memory_usage > 70% due to single module

team:
- module_commits > 60% by single team
- release_frequency different from main app
- technology_requirements divergent

business:
- independent_scaling_value > $50k/year
- compliance_requirements divergent
- customer_sla_requirements different

Pre-Extraction Checklist:

## Service Extraction Checklist

### Technical Readiness
- [ ] Module has well-defined interfaces
- [ ] Data dependencies mapped and minimized
- [ ] Service communication patterns designed
- [ ] Monitoring and logging strategy defined
- [ ] Testing strategy for distributed system

### Team Readiness
- [ ] Clear ownership model established
- [ ] Service-level SLAs defined
- [ ] Incident response procedures updated
- [ ] Documentation and runbooks prepared
- [ ] Team has microservices expertise

### Infrastructure Readiness
- [ ] Service discovery mechanism implemented
- [ ] Load balancing and routing configured
- [ ] Deployment pipeline automated
- [ ] Monitoring and alerting configured
- [ ] Security and authentication updated

Success Metrics

Phase 1 Success Criteria (Modular Monolith)

  • Development velocity: Features delivered per sprint maintained or improved
  • System reliability: 99.9% uptime maintained
  • Response time: 95% of requests < 200ms
  • Team satisfaction: Developer experience survey > 4.0/5.0
  • Code quality: Test coverage > 80%, code review approval rate > 95%

Phase 2 Success Criteria (Selective Microservices)

  • Extracted services meet independent SLAs
  • Overall system complexity manageable (developer survey)
  • Operational overhead < 20% of development time
  • Service-to-service communication < 10ms p95
  • Zero data inconsistency issues between services

Review Schedule

Quarterly Reviews: Assess extraction candidates based on:

  • Performance metrics and bottlenecks
  • Team organization and ownership changes
  • Technology requirements evolution
  • Business scaling needs

Annual Architecture Review:

  • Overall architecture satisfaction survey
  • Cost-benefit analysis of current approach
  • Industry best practices evolution
  • Technology landscape changes

Next Review: March 2025 (3 months post-implementation)


Decision Date: December 19, 2024
Participants: Architecture Team, Development Teams, DevOps
Status: Implementation in progress