ADR-002: Microservices vs Monolith Architecture
Status
Accepted
Context
We need to decide on the overall application architecture for the GISE methodology platform. The decision between a monolithic architecture and microservices architecture will significantly impact development velocity, operational complexity, scalability, and team organization.
Current Situation
- Team size: 8-12 developers across backend, frontend, and DevOps
- Expected load: 10,000+ concurrent users at peak
- Feature scope: User management, project templates, code generation, collaboration tools
- Deployment frequency: Multiple deployments per week desired
- Development stage: Early product development with rapidly evolving requirements
Key Considerations
- Development Speed: Need to move quickly in early stage development
- Team Coordination: Relatively small team that can coordinate effectively
- Technology Consistency: Benefits of standardized technology stack
- Operational Complexity: Limited DevOps resources initially
- Future Scalability: Need to support growth to 100,000+ users
- Feature Isolation: Some features may need independent scaling
Decision
We will start with a Modular Monolith architecture and evolve to microservices as the product and team matures.
Rationale
Phase 1: Modular Monolith (Months 1-12)
Architecture Overview:
┌─────────────────────────────────────────────────────┐
│ GISE Platform API │
├─────────────────────────────────────────────────────┤
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ User │ │ Project │ │ Template │ │
│ │ Module │ │ Module │ │ Module │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
├─────────────────────────────────────────────────────┤
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Auth │ │ Search │ │ Analytics │ │
│ │ Module │ │ Module │ │ Module │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
├─────────────────────────────────────────────────────┤
│ Shared Infrastructure │
│ (Database, Cache, Logging) │
└─────────────────────────────────────────────────────┘
Module Boundaries:
// Clear module interfaces prevent tight coupling
interface UserModule {
createUser(userData: CreateUserRequest): Promise<User>;
authenticateUser(credentials: Credentials): Promise<AuthResult>;
updateUser(userId: string, updates: UserUpdates): Promise<User>;
}
interface ProjectModule {
createProject(projectData: CreateProjectRequest): Promise<Project>;
generateCode(projectId: string, template: Template): Promise<GeneratedCode>;
shareProject(projectId: string, permissions: Permissions): Promise<void>;
}
interface TemplateModule {
searchTemplates(query: SearchQuery): Promise<Template[]>;
createTemplate(templateData: CreateTemplateRequest): Promise<Template>;
validateTemplate(template: Template): Promise<ValidationResult>;
}
Benefits of Starting with Modular Monolith
Development Velocity:
- Single codebase simplifies development setup and debugging
- Shared code and utilities reduce duplication
- Atomic transactions across modules simplify data consistency
- Integrated testing environment with all components
Team Efficiency:
- Easier coordination with small team
- Simplified deployment and rollback procedures
- Single technology stack reduces context switching
- Unified monitoring and logging
Early Stage Advantages:
- Faster iteration on product-market fit
- Easier to refactor boundaries as requirements evolve
- Lower initial operational overhead
- Simpler CI/CD pipeline
Module Design Principles
Clear Boundaries:
// Each module has well-defined interfaces
export class ProjectService {
constructor(
private userService: UserService, // Dependency injection
private templateService: TemplateService,
private database: Database
) {}
async createProject(userId: string, projectData: CreateProjectRequest): Promise<Project> {
// Validate user permissions
await this.userService.validateUser(userId);
// Use templates for validation
const template = await this.templateService.getTemplate(projectData.templateId);
// Create project with transaction
return this.database.transaction(async (tx) => {
return tx.projects.create({
ownerId: userId,
...projectData,
templateId: template.id
});
});
}
}
Database Organization:
-- Logical separation within single database
-- User Module Tables
CREATE SCHEMA user_management;
CREATE TABLE user_management.users (...);
CREATE TABLE user_management.user_sessions (...);
-- Project Module Tables
CREATE SCHEMA project_management;
CREATE TABLE project_management.projects (...);
CREATE TABLE project_management.project_collaborators (...);
-- Template Module Tables
CREATE SCHEMA template_system;
CREATE TABLE template_system.templates (...);
CREATE TABLE template_system.template_categories (...);
Phase 2: Selective Microservices (Months 6-18)
As the system matures, extract specific modules that benefit from independent scaling:
Candidates for Microservice Extraction:
-
Code Generation Service
- CPU-intensive workloads
- Independent scaling needs
- Potential for different technology stack (Python for AI/ML)
-
Search Service
- High read volume
- Different performance characteristics
- Potential integration with specialized search engines
-
Analytics Service
- Different data patterns (write-heavy, batch processing)
- Separate teams may own analytics functionality
- Integration with external analytics tools
┌─────────────────┐ ┌──────────────────┐
│ Web Client │ │ Mobile App │
└─────────────────┘ └──────────────────┘
│ │
└────────────┬───────────┘
│
┌────────────────────────┐
│ API Gateway │
│ (Authentication, │
│ Rate Limiting) │
└────────────────────────┘
│
┌─────────────────┼─────────────────┐
│ │ │
┌───▼────┐ ┌──────▼──────┐ ┌─────▼────┐
│ Core │ │Code Generation│ │ Search │
│Monolith│ │ Service │ │ Service │
│ │ │ │ │ │
└────────┘ └───────────────┘ └──────────┘
Implementation Plan
Phase 1: Modular Monolith Setup (Weeks 1-8)
Week 1-2: Foundation
// Project structure
src/
├── modules/
│ ├── user/
│ │ ├── user.service.ts
│ │ ├── user.controller.ts
│ │ ├── user.model.ts
│ │ └── user.types.ts
│ ├── project/
│ │ ├── project.service.ts
│ │ ├── project.controller.ts
│ │ └── ...
│ └── template/
├── shared/
│ ├── database/
│ ├── logging/
│ ├── validation/
│ └── types/
├── infrastructure/
│ ├── server.ts
│ ├── database.ts
│ └── middleware/
└── tests/
Week 3-4: Core Modules
- Implement User module with authentication
- Implement Project module with basic CRUD
- Implement Template module with search
Week 5-6: Integration
- Module integration and API composition
- Shared infrastructure (database, caching, logging)
- Error handling and validation
Week 7-8: Testing and Deployment
- Comprehensive test suite
- CI/CD pipeline setup
- Production deployment and monitoring
Phase 2: Monitoring and Metrics (Weeks 9-12)
Module Performance Tracking:
// Module performance decorators
@TrackPerformance('user-module')
export class UserService {
@MetricsCollection({ operation: 'create-user' })
async createUser(userData: CreateUserRequest): Promise<User> {
// Implementation
}
}
// Monitoring configuration
const moduleMetrics = {
'user-module': {
responseTime: { threshold: 100, percentile: 95 },
errorRate: { threshold: 1 }, // 1% error rate
throughput: { min: 100 } // requests per second
},
'project-module': {
responseTime: { threshold: 200, percentile: 95 },
errorRate: { threshold: 2 },
throughput: { min: 50 }
}
};
Phase 3: Extraction Decision Points (Months 6-9)
Microservice Extraction Criteria:
const extractionDecisionMatrix = {
codeGeneration: {
independentScaling: 9, // High CPU usage, different scaling needs
teamOwnership: 7, // AI/ML team may own this
technology: 8, // Python may be better for AI/ML
dataIsolation: 6, // Some shared data needed
deploymentFrequency: 8, // Frequent algorithm updates
score: 38 // Candidate for extraction
},
userManagement: {
independentScaling: 4, // Scales with overall system
teamOwnership: 3, // Core platform team
technology: 2, // No technology benefit
dataIsolation: 3, // Highly coupled data
deploymentFrequency: 4, // Standard deployment cycle
score: 16 // Keep in monolith
},
search: {
independentScaling: 8, // High read volume
teamOwnership: 6, // Could have dedicated team
technology: 7, // Elasticsearch integration
dataIsolation: 8, # Mostly read-only data
deploymentFrequency: 5, // Standard updates
score: 34 // Candidate for extraction
}
};
// Extract services scoring > 30
Consequences
Positive Consequences
Development Benefits:
- Faster initial development and iteration
- Simplified debugging with single codebase
- Atomic transactions ensure data consistency
- Reduced operational complexity initially
- Easier to refactor module boundaries
Team Benefits:
- Single deployment process for entire team
- Shared knowledge across codebase
- Simplified local development setup
- Easier code sharing and reuse
Technical Benefits:
- Lower latency between modules
- Simplified error handling and monitoring
- Single technology stack
- Easier integration testing
Negative Consequences
Scalability Limitations:
- All modules scale together (may be inefficient)
- Single point of failure for entire system
- Technology constraints apply to all modules
- Resource allocation less flexible
Development Constraints:
- Larger codebase may slow development over time
- All developers need understanding of entire system
- Coordinated deployments required
- Technology choices affect entire system
Future Migration Costs:
- Breaking apart monolith requires significant refactoring
- Data migration complexity when extracting services
- Need to implement service communication patterns
- Testing complexity increases with distribution
Alternatives Considered
Pure Microservices Architecture
Pros:
- Independent scaling of services
- Technology diversity possible
- Team autonomy and ownership
- Fault isolation between services
Cons:
- High operational complexity for small team
- Distributed system complexity (network, consistency)
- Service discovery and communication overhead
- Debugging across services challenging
- Higher infrastructure costs
Decision: Rejected for initial implementation due to team size and operational complexity.
Traditional Monolith
Pros:
- Simplest possible architecture
- Fastest initial development
- Easiest deployment and operations
- Single technology stack
Cons:
- No clear boundaries or isolation
- Difficult to extract services later
- All code changes affect entire system
- Technology and scaling limitations
Decision: Rejected in favor of modular approach that enables future evolution.
Event-Driven Architecture
Pros:
- Loose coupling between components
- High scalability potential
- Good for complex workflows
- Natural fit for some business processes
Cons:
- Complex debugging and monitoring
- Eventual consistency challenges
- Event schema evolution complexity
- Requires significant messaging infrastructure
Decision: Rejected for initial implementation; may be adopted later for specific workflows.
Migration Strategy
Metrics-Driven Decision Making
Module Extraction Triggers:
extraction_criteria:
performance:
- response_time_p99 > 500ms consistently
- cpu_usage > 80% due to single module
- memory_usage > 70% due to single module
team:
- module_commits > 60% by single team
- release_frequency different from main app
- technology_requirements divergent
business:
- independent_scaling_value > $50k/year
- compliance_requirements divergent
- customer_sla_requirements different
Pre-Extraction Checklist:
## Service Extraction Checklist
### Technical Readiness
- [ ] Module has well-defined interfaces
- [ ] Data dependencies mapped and minimized
- [ ] Service communication patterns designed
- [ ] Monitoring and logging strategy defined
- [ ] Testing strategy for distributed system
### Team Readiness
- [ ] Clear ownership model established
- [ ] Service-level SLAs defined
- [ ] Incident response procedures updated
- [ ] Documentation and runbooks prepared
- [ ] Team has microservices expertise
### Infrastructure Readiness
- [ ] Service discovery mechanism implemented
- [ ] Load balancing and routing configured
- [ ] Deployment pipeline automated
- [ ] Monitoring and alerting configured
- [ ] Security and authentication updated
Success Metrics
Phase 1 Success Criteria (Modular Monolith)
- Development velocity: Features delivered per sprint maintained or improved
- System reliability: 99.9% uptime maintained
- Response time: 95% of requests < 200ms
- Team satisfaction: Developer experience survey > 4.0/5.0
- Code quality: Test coverage > 80%, code review approval rate > 95%
Phase 2 Success Criteria (Selective Microservices)
- Extracted services meet independent SLAs
- Overall system complexity manageable (developer survey)
- Operational overhead < 20% of development time
- Service-to-service communication < 10ms p95
- Zero data inconsistency issues between services
Review Schedule
Quarterly Reviews: Assess extraction candidates based on:
- Performance metrics and bottlenecks
- Team organization and ownership changes
- Technology requirements evolution
- Business scaling needs
Annual Architecture Review:
- Overall architecture satisfaction survey
- Cost-benefit analysis of current approach
- Industry best practices evolution
- Technology landscape changes
Next Review: March 2025 (3 months post-implementation)
Decision Date: December 19, 2024
Participants: Architecture Team, Development Teams, DevOps
Status: Implementation in progress