Skip to main content

GISE Governance Framework

Effective governance is essential for successful AI system deployment. The GISE governance framework provides structured approaches to model management, prompt library control, security implementation, and operational oversight for both LLM-for-Dev and LLM-in-Product tracks.

Governance Architecture Overview

Model Governance

Model Registry & Lifecycle Management

The model registry serves as the single source of truth for all AI models used across your organization.

Registry Components:

  • Model Metadata: Version, training data, performance metrics, licensing
  • Performance Benchmarks: Accuracy, latency, cost per inference
  • Approval Workflows: Review and approval processes for model deployment
  • Deprecation Policies: Sunset procedures for outdated models
# Example Model Registry Entry
model_registry:
gpt-4-turbo-2024-04:
version: "2024-04-09"
provider: "OpenAI"
capabilities: ["text-generation", "code-generation", "analysis"]
performance:
latency_p95: "1.2s"
cost_per_1k_tokens: "$0.01"
context_window: "128k"
compliance:
data_residency: "US/EU"
privacy_rating: "high"
safety_rating: "tier-1"
approval:
status: "approved"
approved_by: "ai-governance-board"
approval_date: "2024-04-15"
review_date: "2024-07-15"
usage_guidelines:
allowed_use_cases: ["customer-support", "content-generation"]
restricted_use_cases: ["financial-advice", "medical-diagnosis"]
max_concurrent_requests: 1000

Performance Monitoring Framework

Continuous monitoring ensures models maintain expected performance levels in production.

Key Metrics:

  • Accuracy Metrics: Response relevance, factual correctness, hallucination rates
  • Performance Metrics: Latency percentiles, throughput, availability
  • Cost Metrics: Token usage, API costs, infrastructure expenses
  • Business Metrics: User satisfaction, task completion rates, conversion impact

Compliance Management

Ensure AI systems meet regulatory and organizational requirements.

Compliance Areas:

  • Data Privacy: GDPR, CCPA, industry-specific regulations
  • Security Standards: SOC2, ISO 27001, industry frameworks
  • Audit Requirements: Logging, traceability, evidence collection
  • Ethical AI: Bias detection, fairness metrics, transparency

Prompt Library Management

Version-Controlled Prompt Library

Treat prompts as code with proper software engineering practices.

Library Structure:

prompts/
├── discovery/
│ ├── requirements-analysis.md
│ ├── user-story-generation.md
│ └── stakeholder-interviews.md
├── design/
│ ├── architecture-review.md
│ ├── api-specification.md
│ └── security-assessment.md
├── development/
│ ├── code-review.md
│ ├── test-generation.md
│ └── documentation.md
├── deployment/
│ ├── configuration-review.md
│ ├── monitoring-setup.md
│ └── troubleshooting.md
└── shared/
├── formatting-guidelines.md
├── safety-instructions.md
└── context-templates.md

Prompt Testing Framework

Automated validation ensures prompt effectiveness and safety.

interface PromptTest {
id: string;
promptId: string;
testCase: {
input: string;
expectedOutputPattern: RegExp | string;
context?: any;
};
validation: {
accuracy: number;
latency: number;
safety: boolean;
cost: number;
};
}

class PromptTestingFramework {
async runPromptTests(promptId: string): Promise<TestResults> {
const prompt = await this.promptLibrary.getPrompt(promptId);
const testCases = await this.getTestCases(promptId);

const results: TestResult[] = [];

for (const testCase of testCases) {
const result = await this.runSingleTest(prompt, testCase);
results.push(result);
}

return {
promptId,
testRunId: this.generateTestRunId(),
timestamp: new Date(),
totalTests: testCases.length,
passedTests: results.filter(r => r.passed).length,
averageLatency: this.calculateAverageLatency(results),
averageCost: this.calculateAverageCost(results),
safetyViolations: results.filter(r => !r.safetyCheck).length,
detailedResults: results
};
}

private async runSingleTest(prompt: Prompt, testCase: PromptTest): Promise<TestResult> {
const startTime = Date.now();

try {
const response = await this.llmService.complete({
prompt: prompt.content,
input: testCase.testCase.input,
context: testCase.testCase.context
});

const endTime = Date.now();

return {
testId: testCase.id,
passed: this.validateResponse(response, testCase.testCase.expectedOutputPattern),
response: response,
latency: endTime - startTime,
cost: this.calculateCost(response),
safetyCheck: await this.runSafetyCheck(response),
timestamp: new Date()
};

} catch (error) {
return {
testId: testCase.id,
passed: false,
error: error.message,
latency: Date.now() - startTime,
cost: 0,
safetyCheck: false,
timestamp: new Date()
};
}
}
}

Quality Standards & Review Process

Establish consistent quality criteria for prompt development.

Quality Checklist:

  • Clarity: Prompt instructions are clear and unambiguous
  • Completeness: All necessary context and constraints are included
  • Safety: No potential for harmful or inappropriate outputs
  • Efficiency: Prompt is concise while maintaining effectiveness
  • Testability: Clear success criteria and measurable outcomes
  • Documentation: Purpose, usage guidelines, and examples provided

Security & Safety Framework

Input Validation & Sanitization

Protect against malicious inputs and prompt injection attacks.

class InputValidationService {
private validators: InputValidator[] = [
new PromptInjectionValidator(),
new PIIDetector(),
new ProfanityFilter(),
new LengthValidator(),
new FormatValidator()
];

async validateInput(userInput: string, context: RequestContext): Promise<ValidationResult> {
const results: ValidatorResult[] = [];

for (const validator of this.validators) {
const result = await validator.validate(userInput, context);
results.push(result);

// Fail fast on critical violations
if (result.severity === 'critical' && !result.passed) {
return {
passed: false,
reason: result.reason,
severity: result.severity,
sanitizedInput: null,
blockRequest: true
};
}
}

// Apply sanitization if needed
const sanitizedInput = await this.applySanitization(userInput, results);

return {
passed: true,
sanitizedInput,
warnings: results.filter(r => r.severity === 'warning'),
blockRequest: false
};
}

private async applySanitization(input: string, results: ValidatorResult[]): Promise<string> {
let sanitized = input;

// Apply PII masking
const piiResults = results.filter(r => r.validatorType === 'pii');
for (const result of piiResults) {
sanitized = result.sanitizeFunction(sanitized);
}

// Apply profanity filtering
const profanityResults = results.filter(r => r.validatorType === 'profanity');
for (const result of profanityResults) {
sanitized = result.sanitizeFunction(sanitized);
}

return sanitized;
}
}

Output Monitoring & Validation

Monitor AI outputs for quality, safety, and appropriateness.

class OutputMonitoringService {
async monitorOutput(output: string, context: GenerationContext): Promise<MonitoringResult> {
const checks: OutputCheck[] = [
await this.checkHallucination(output, context),
await this.checkBias(output, context),
await this.checkSafety(output),
await this.checkQuality(output, context),
await this.checkCompliance(output, context)
];

const criticalIssues = checks.filter(c => c.severity === 'critical' && !c.passed);
const warnings = checks.filter(c => c.severity === 'warning' && !c.passed);

return {
overallRating: this.calculateOverallRating(checks),
criticalIssues: criticalIssues,
warnings: warnings,
shouldBlock: criticalIssues.length > 0,
suggestedActions: this.generateSuggestedActions(checks),
metadata: {
timestamp: new Date(),
contextId: context.id,
modelUsed: context.model
}
};
}

private async checkHallucination(output: string, context: GenerationContext): Promise<OutputCheck> {
// Check for factual accuracy against retrieved context
if (context.retrievedSources) {
const factualConsistency = await this.verifyFactualConsistency(output, context.retrievedSources);
return {
checkType: 'hallucination',
passed: factualConsistency.score > 0.8,
score: factualConsistency.score,
severity: factualConsistency.score < 0.6 ? 'critical' : 'warning',
details: factualConsistency.details
};
}

// Use general hallucination detection
const hallucinationScore = await this.detectHallucination(output);
return {
checkType: 'hallucination',
passed: hallucinationScore < 0.3,
score: 1 - hallucinationScore,
severity: hallucinationScore > 0.7 ? 'critical' : 'warning',
details: `Hallucination confidence: ${hallucinationScore}`
};
}
}

Audit Logging & Compliance

Comprehensive logging for compliance and incident investigation.

interface AuditEvent {
eventId: string;
timestamp: Date;
eventType: 'model_inference' | 'prompt_execution' | 'safety_violation' | 'access_control' | 'configuration_change';
userId?: string;
sessionId?: string;
modelId?: string;
promptId?: string;
input?: {
originalInput: string;
sanitizedInput: string;
context: any;
};
output?: {
response: string;
confidence: number;
safetyScore: number;
};
metadata: {
ipAddress: string;
userAgent: string;
requestId: string;
processingTime: number;
cost: number;
};
compliance: {
dataClassification: 'public' | 'internal' | 'confidential' | 'restricted';
retentionPolicy: string;
privacyNotice: boolean;
};
}

class AuditLoggingService {
async logEvent(event: AuditEvent): Promise<void> {
// Validate event structure
await this.validateEventStructure(event);

// Apply data masking for sensitive information
const maskedEvent = await this.applyDataMasking(event);

// Store in audit log
await this.auditRepository.store(maskedEvent);

// Check for patterns that require immediate attention
await this.checkForAnomalies(event);

// Update metrics
await this.updateAuditMetrics(event);
}

async generateComplianceReport(
startDate: Date,
endDate: Date,
complianceFramework: string
): Promise<ComplianceReport> {
const events = await this.auditRepository.getEventsByDateRange(startDate, endDate);

switch (complianceFramework) {
case 'GDPR':
return this.generateGDPRReport(events);
case 'SOC2':
return this.generateSOC2Report(events);
case 'HIPAA':
return this.generateHIPAAReport(events);
default:
return this.generateGeneralReport(events);
}
}
}

Operational Metrics & KPIs

Comprehensive Metrics Dashboard

Track key performance indicators across all AI systems.

Core Metrics Categories:

Alert & Escalation Framework

Proactive monitoring with intelligent alerting.

# Alert Configuration Example
alert_rules:
critical_alerts:
- name: "High Error Rate"
condition: "error_rate > 5% for 5 minutes"
notification: ["on-call-engineer", "ai-team-lead"]
escalation_time: "15 minutes"

- name: "Safety Violation Detected"
condition: "safety_violations > 0"
notification: ["security-team", "ai-governance-board"]
escalation_time: "immediate"

- name: "Model Performance Degradation"
condition: "accuracy_score < 0.8 for 30 minutes"
notification: ["ml-team", "product-owner"]
escalation_time: "30 minutes"

warning_alerts:
- name: "Increased Latency"
condition: "p95_latency > 2s for 10 minutes"
notification: ["engineering-team"]
escalation_time: "60 minutes"

- name: "Cost Threshold Exceeded"
condition: "daily_ai_cost > budget_threshold * 1.2"
notification: ["finance-team", "engineering-lead"]
escalation_time: "4 hours"

Cost Management & Optimization

Monitor and optimize AI system costs across all tracks.

class CostManagementService {
async calculateAICosts(timeRange: TimeRange): Promise<CostBreakdown> {
const [llmCosts, vectorDbCosts, computeCosts, storageCosts] = await Promise.all([
this.calculateLLMCosts(timeRange),
this.calculateVectorDbCosts(timeRange),
this.calculateComputeCosts(timeRange),
this.calculateStorageCosts(timeRange)
]);

return {
totalCost: llmCosts.total + vectorDbCosts.total + computeCosts.total + storageCosts.total,
breakdown: {
llmInference: llmCosts,
vectorDatabase: vectorDbCosts,
compute: computeCosts,
storage: storageCosts
},
trends: await this.calculateCostTrends(timeRange),
optimization: await this.generateOptimizationRecommendations(llmCosts, vectorDbCosts, computeCosts),
projections: await this.projectMonthlyCosts()
};
}

async generateOptimizationRecommendations(
llmCosts: CostData,
vectorDbCosts: CostData,
computeCosts: CostData
): Promise<OptimizationRecommendation[]> {
const recommendations: OptimizationRecommendation[] = [];

// Analyze LLM usage patterns
if (llmCosts.wastedTokens > llmCosts.totalTokens * 0.1) {
recommendations.push({
type: 'prompt_optimization',
description: 'Optimize prompts to reduce token usage',
potentialSavings: llmCosts.wastedTokens * llmCosts.costPerToken,
effort: 'medium',
timeframe: '2-4 weeks'
});
}

// Check for caching opportunities
if (vectorDbCosts.cacheHitRate < 0.6) {
recommendations.push({
type: 'caching_improvement',
description: 'Implement better caching for vector searches',
potentialSavings: vectorDbCosts.total * 0.3,
effort: 'low',
timeframe: '1 week'
});
}

return recommendations;
}
}

Regular Review & Improvement

Governance Review Cycles

Establish regular review processes to maintain governance effectiveness.

Review Schedule:

  • Weekly: Operational metrics, incident reviews, performance monitoring
  • Monthly: Cost analysis, model performance, user feedback review
  • Quarterly: Governance policy updates, compliance assessment, strategy alignment
  • Annually: Comprehensive governance audit, framework evolution, industry benchmark comparison

Continuous Improvement Process

Knowledge Management

Capture and share governance lessons learned across the organization.

Knowledge Repository:

  • Best Practices: Proven governance patterns and approaches
  • Lessons Learned: Post-incident reviews and improvement insights
  • Case Studies: Real-world governance scenarios and solutions
  • Templates: Reusable governance artifacts and checklists
  • Training Materials: Onboarding and ongoing education resources

Implementation Roadmap

Phase 1: Foundation (Weeks 1-2)

  • Establish model registry and basic monitoring
  • Set up prompt library with version control
  • Implement basic input validation and output monitoring
  • Create audit logging infrastructure
  • Define initial governance policies

Phase 2: Enhancement (Weeks 3-4)

  • Add advanced monitoring and alerting
  • Implement comprehensive safety checks
  • Set up automated prompt testing
  • Create governance dashboards
  • Establish review processes

Phase 3: Optimization (Weeks 5-6)

  • Add cost management and optimization
  • Implement advanced compliance features
  • Create automated governance workflows
  • Set up continuous improvement processes
  • Train team on governance procedures

Phase 4: Maturity (Weeks 7-8)

  • Conduct comprehensive governance audit
  • Optimize based on usage patterns
  • Establish governance center of excellence
  • Create organization-wide governance standards
  • Plan for ongoing governance evolution

Ready to implement comprehensive AI governance? Start with Phase 1: Foundation and build systematically toward mature governance practices. Remember that governance is not a one-time effort but an ongoing commitment to responsible AI deployment.